Energy, Nanomechanics, and Surfaces Research Laboratory

Publications

Edited books and Special Journal Volumes

  1. “Ion-Solid Interactions for Materials Modification and Processing,” edited by D. B. Poker, D. Ila, Y.-T. Cheng, L. R. Harriott, T. W. Sigmon, Mat. Res. Soc. Symp. Proc. 396 (Materials Research Society, Pittsburgh, 1996).
  2. “Surface Engineering 2001 – Fundamentals and Applications,” edited by W.-J. Meng, A. Kumar, G. L. Doll,  Y.-T. Cheng, S. Veprek, and Y.-W. Chung, Mat. Res. Soc. Symp. Proc. 697 (Materials Research Society, Pittsburgh, 2002).
  3. “Surface engineering 2002 – Synthesis, characterization, and applications,” edited by A. Kumar, W.-J. Meng, Y.-T. Cheng, J. S. Zabinski, G. L. Doll, and S. Veprek, Mat. Res. Soc. Symp. Proc. 750 (Materials Research Society, Pittsburgh, 2003).
  4. “Fundamentals and applications of instrumented indentation in multidisciplinary research,” edited by Yang-Tse Cheng, Trevor Page, George M. Pharr, Michael V. Swain, and Kathryn J. Wahl, Special Issue, J. Mat.Res. 19 (1) (2004).
  5. “Fundamentals of Nanoindentation and Nanotribology III,” edited by D.F. Bahr, Y-T. Cheng, N. Huber, A.B. Mann, and K.J. Wahl, Mat. Res. Soc. Symp. Proc. 841 (Materials Research Society, Pittsburgh, 2005).
  6. “Focus Issue on Indentation Methods in Advanced Materials Research,” George M. Pharr, Yang-Tse Cheng, Ian M. Hutchings, Mototsugu Sakai, Neville R. Moody, G. Sundararajan, and Michael V. Swain, Special Issue, J. Mat. Res. 24 (1) (2009).
  7. “Focus Issue on Instrumented Indentation,” Dongil Kwon, M. Munawar Chaudhri, Yang-Tse Cheng, and Oliver Kraft, J. Mat. Res. 27 (1) (2012).
  8. “Materials & Engineering: Propelling Innovation,” V.S. Arunachalam, Dipankar Banerjee, Yang-Tse Cheng, and James C. Williams, MRS Bulletin Special Issue 40 (12) (2015).

 

Publications

Lithium Batteries, Supercapacitors, Metal-hydride Thin Film Electrodes and Hydrogen Sensors

  1. Preparation and characterization of amorphous and crystalline LaNi5 thin film electrodes,” Yang Li, Y.-T. Cheng, and M. Ahsan Habib, J. Alloys and Compounds 209, 7 (1994).
  2. “Electrochemical study of amorphous La-Ni thin film electrodes,” Yang Li and Y.-T. Cheng, in Proceedings of the Symposium on Hydrogen and Metal Hydride Batteries, edited by P. D. Bennett and T. Sakai (The Electrochemical Society, Pennington, 1994), p. 145.
  3. “Hydrogen diffusion in palladium thin films,” Yang Li and Y.-T. Cheng, in Proceedings of the Symposium on Hydrogen and Metal Hydride Batteries, edited by P. D. Bennett and T. Sakai (The Electrochemical Society, Pennington, 1994), p. 136.
  4. “Amorphous La-Ni thin film electrodes,” Yang Li and Y.-T. Cheng, J. Alloys and Compounds 223, 6 (1995).
  5. “Hydrogen diffusion and solubility in Pd thin films,” Yang Li and Y.-T. Cheng, Int. J. Hydrogen Energy 21, 281 (1996).
  6. “Preparation and characterization of PdNi thin films for hydrogen detection,'' Y.-T. Cheng, Yang Li, D. J. Lisi, and W. M. Wang, Sensors and Actuators B30, 11 (1996).
  7. “Studies of metal hydride electrodes using an electrochemical quartz crystal microbalance,” Yang Li and Y.-T. Cheng, J. Electrochemical Soc. 143, 120 (1996).
  8. “Optical measurement of lithium diffusivity in cathode materials: amorphous MoO3 films,” I. C. Halalay, G.-A. Nazri, Y.-T. Cheng, G. L. Eesley, and M. S. Meyer, Power Sources 54, 218 (1995).
  9. “The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles,” Y.-T. Cheng and M. W. Verbrugge, J. Appl. Phys. 104, 083521 (2008). view
  10. “Stress Distribution within Spherical Particles Undergoing Electrochemical Insertion and Extraction,” M. W. Verbrugge and Y.-T. Cheng, The Electrochemical Society (ECS) Transactions 16, 127 (2008).
  11. “Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation,” Y.-T. Cheng and M. W. Verbrugge, J. Power Sources 190, 453 (2009). view J. Power Sources 196, 2430-2431 (2011). view
  12. “Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations,”  M. W. Verbrugge and Y.-T. Cheng, J. Electrochem. Soc. 156, A927(2009). view
  13. “Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles,” Y.-T. Cheng and M. W. Verbrugge, J. Electrochem. Soc. 157, A508 (2010). view
  14. “Modeling Diffusion-Induced Stress in Nanowire Electrode Structures,” Rutooj Deshpande, Yang-Tse Cheng, Mark W. Verbrugge, J. Power Sources 195, 5081 (2010). view
  15. “Effects of Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses for Battery Applications,” Rutooj Deshpande, Yue Qi, and Yang-Tse Cheng, J. Electrochem.  Soc. 157, A967 (2010). view
  16. “Application of Hasselman's Crack Propagation Model to Insertion Electrodes,” Yang-Tse Cheng and Mark W. Verbrugge, Electrochemical and Solid-State Letters 13, A128 (2010). view
  17. “Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress,” S. J. Harris, R. Deshpande, Y. Qi, I. Dutta, Y.-T. Cheng, J. Materials Research 8, 1433 (2010). view
  18. “Whisker Formation on a Thin Film Tin Lithium-Ion Battery Anode,” Juchuan Li, Fuqian Yang, Jia Ye, Yang-Tse Cheng, Journal Power Sources 196, 1474 (2011). view
  19. “Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes,” Juchuan Li, Alan K. Dozier, Yunchao Li, Fuqian Yang, and Yang-Tse Cheng, Journal of The Electrochemical Society 158, A689–A694 (2011). view
  20. “Diffusion Induced Stresses and Strain Energy in a Phase-Transforming Spherical Electrode Particle,” Rutooj Deshpande, Yang-Tse Cheng, Mark W. Verbrugge, and Adam Timmons, Journal of The Electrochemical Society 158, A718–A724 (2011). view
  21. “Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries,” Rutooj D. Deshpande, Juchuan Li, Yang-Tse Cheng, and Mark W. Verbrugge, Journal of The Electrochemical Society 158, A845–A849 (2011). view
  22. “Potentiostatic Intermittent Titration Technique (PITT) for Electrodes Governed by Diffusion and Interfacial Reaction,” Juchuan Li, Xingcheng Xiao, Fuqian Yang, Mark Verbrugge, and Yang-Tse Cheng, Journal of Physical Chemistry C 116, 1472-1478 (2012). view
  23. "Potentiostatic Intermittent Titration Technique (PITT) for Spherical Particles with Finite Interfacial Kinetics," Juchuan Li, Xingcheng Xiao, Fuqian Yang, Mark W. Verbrugge, and Yang-Tse Cheng,  Electrochimica Acta, 75: 56-61 (2012).  view 
  24. “Electrochemical Study of Functionalized Carbon Nano-Onions for High-Performance Supercapacitor Electrodes,” Rituraj Borgohain, Juchuan Li, John P. Selegue, and Y.-T. Cheng, Journal of Physical Chemistry C 116, 15068−15075 (2012). view
  25. “Aligned TiO2 Nanotube Arrays As Durable Lithium-Ion Battery Negative Electrodes,” Qing Liu Wu, Juchuan Li, Rutooj D. Deshpande, Navaladian Subramanian, Stephen E. Rankin, Fuqian Yang, and Yang-Tse Cheng, Journal of Physical Chemistry C 116, 18669–18677 (2012). view
  26. “Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics,” Rutooj Deshpande, Mark Verbrugge, Yang-Tse Cheng, John Wang, and Ping Liu, Journal of The Electrochemical Society 159, A1730-A1738 (2012).
  27. “Understanding Diffusion-Induced-Stresses in Lithium Ion Battery Electrodes,” Yang-Tse Cheng, Mark W Verbrugge, Rutooj Deshpande, in IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, edited by Alan Cocks and Jianxiang Wang (Springer, 2013), pp. 203-215.
  28. “Atomic Layered Coating Enabling Ultrafast Surface Kinetics at Silicon Electrodes in Lithium Ion Batteries,” Juchuan Li, Xingcheng Xiao, Yang-Tse Cheng, and Mark W. Verbrugge, Journal of Physical Chemistry Letters 4 (20), 3387-3391 (2013). view
  29. “Stacked Cup Type MWCNTs as Highly Stable Lithium Ion Battery Anodes,” Juchuan Li, Aman P. Kaur, Mark S. Meier, and Yang-Tse Cheng, Journal of Applied Electrochemistry 44 (1), 179-187 (2014). view
  30. “A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition,” Qinglin Zhang, Xingcheng Xiao, Yang-Tse Cheng, and Mark W. Verbrugge, Applied Physics Letters 105, 061901 (2014).
  31. “Ternary composites of delaminated-MnO2/PDDA/functionalized-CNOs for high-capacity supercapacitor electrodes,” Rituraj Borgohain, John P. Selegue, and Yang-Tse Cheng, Journal of Materials Chemistry A 2, 20367-20373 (2014).
  32. “Toward High Cycle Efficiency of Silicon‐Based Negative Electrodes by Designing the Solid Electrolyte Interphase,” Qinglin Zhang, Xingcheng Xiao, Weidong Zhou, Yang‐Tse Cheng, and Mark W. Verbrugge, Advanced Energy Materials 5 (5), 1401398 (2015).
  33. “Asymmetric Rate Behavior of Si Anodes for Lithium-Ion Batteries: Ultrafast De-Lithiation versus Sluggish Lithiation at High Current Densities,” Juchuan Li, Nancy J. Dudney, Xingcheng Xiao, Yang-Tse Cheng, Chengdu Liang, and Mark W. Verbrugge, Advanced Energy Materials 5 (6), 1401627 (2015).
  34. “Diffusion-induced stress within core-shell structures and implications for robust electrode design and materials selection,” M. W. Verbrugge, D. R. Baker, Y. Qi, and Y-T. Cheng, Chapter 6 in Electrochemical Engineering across Scales, from Molecules to Processes, edited by R. C. Alkire, P. N. Bartlett, and J. Lipkowsky (Wiley, 2015).
  35. “Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries,” Jie Pan, Qinglin Zhang, Juchuan Li, Matthew J. Beck, Xingcheng Xiao, Yang-Tse Cheng, Nano Energy 13, 192–199 (2015).
  36. “General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes,” Jie Pan, Yang-Tse Cheng, Yue Qi, Physical Review B 91, 134116 (2015).
  37. “Experimental and Theoretical Characterization of Electrode Materials that Undergo Large Volume Changes and Application to the Lithium-Silicon System,” Mark W. Verbrugge, Daniel R. Baker, Xingcheng Xiao, Qinglin Zhang, and Yang-Tse Cheng, J. Phys. Chem. C 119, 5341−5349 (2015).
  38. “Unravelling the Impact of Reaction Paths on Mechanical Degradation of Intercalation Cathodes for Lithium-Ion Batteries,” Juchuan Li, Qinglin Zhang, Xingcheng Xiao, Yang-Tse Cheng, Chengdu Liang, and Nancy J. Dudney, J. Am. Chem. Soc. 137, 13732−13735 (2015).
  39. “Electrode Side Reactions, Capacity Loss and Mechanical Degradation in Lithium-Ion Batteries,” Jiagang Xu, Rutooj D. Deshpande, Jie Pan, Yang-Tse Cheng,  and Vincent S. Battaglia, J. Electrochem. Soc. 162 (10) A2026-A2035 (2015).
  40. “High Capacity Silicon Electrodes with Nafion as Binders for Lithium-Ion Batteries,” Jiagang Xu, Qinglin Zhang, and Yang-Tse Cheng, J. Electrochem.Soc. 163 (3), A401-A405 (2016).
  41. “Binder-free lithium ion battery electrodes made of silicon and pyrolized lignin,” Tao Chen, Qinglin Zhang, Jiagang Xu, Jie Pan, and Yang-Tse Cheng, RSC Advances 6,  29308-29313 (2016).
  42. “Voltage hysteresis of lithium ion batteries caused by mechanical stress,” Bo Lu, Yicheng Song, Qinglin Zhang, Jie Pan, Yang-Tse Cheng, Junqian Zhang, Physical Chemistry Chemical Physics 18, 4721-4727 (2016).
  43. “Design of nano-structured heterogeneous solid ionic coatings through a multi-scale defect model,” Jie Pan, Qinglin Zhang, Xingcheng Xiao, Yang-Tse Cheng, and Yue Qi, ACS Applied Materials & Interfaces 8, 5687-5693 (2016).
  44. “Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries,” Qinglin Zhang, Jie Pan, Peng Lu, Zhongyi Liu, Mark W. Verbrugge, Brian W. Sheldon, Yang-Tse Cheng, Yue Qi, andXingcheng Xiao, Nano Letters 16, 2011-2016 (2016).
  45. “Low-temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries,” Tao Chen, Qinglin Zhang, Jie Pan, Jiagang Xu, Yiyang Liu, Mohanad Al-Shroofy, and Yang-Tse Cheng, ACS Applied Materials & Interfaces 8, 32341-32348 (2016).
  46. “Unveiling the Critical Role of Polymeric Binders for Silicon Negative Electrodes in Lithium-Ion Full Cells,” Jiagang Xu, Long Zhang, Yikai Wang, Tao Chen, Mohanad Al-Shroofy, Yang-Tse Cheng, ACS Applied Materials & Interfaces 9 (4), 3562–3569 (2017).
  47. “Chemically stable artificial SEI for Li-ion battery electrodes,” Qinglin Zhang, Lei Han, Jie Pan, Zhi Chen, and Yang-Tse Cheng, Appl. Phys. Lett. 110, 133901 (2017).
  48. “Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries,” Mohanad Al-Shroofy, Qinglin Zhang, Jiagang Xu, Tao Chen, Aman Preet Kaur, and Yang-Tse Cheng, Journal of Power Sources 352, 187-193 (2017).
  49. “High performance binder-free SiOx/C composite LIB electrode made of SiOx and lignin,” Tao Chen, Jiazhi Hu, Long Zhang, Jie Pan, Yiyang Liu, and Yang-Tse Cheng, Journal of Power Sources 362: 236-242 (2017).
  50. “Systematic Investigation of the Alucone-Coating Enhancement on Silicon Anodes,” Seoung-Bum Son, Yikai Wang, Jiagang Xu, Xuemin Li, Markus Groner, Adam Stokes, Yongan Yang, Yang-Tse Cheng, and Chunmei Ban, ACS Applied Materials & Interfaces 9(46): 40143-40150 (2017).
  51. “In situ measurement of mechanical property and stress evolution in a composite silicon electrode,” Dawei Li, Yikai Wang, Jiazhi Hu, Bo Lu, Yang-Tse Cheng, and Junqian Zhang, Journal of Power Sources 366: 80-85 (2017).
  52. “Charge Transport in Electronic–Ionic Composites,” Long Zhang, Xiaowen Zhan, Yang-Tse Cheng, and Mona Shirpour, The Journal of Physical Chemistry Letters 8: 5385-5389 (2017).
  53. “Application of Cross-Linked Polyborosiloxanes and Organically Modified Boron Silicate Binders in Silicon-Containing Anodes for Lithium-Ion Batteries,” Darius A. Shariaty, Dali Qian, Yang-Tse Cheng, and Susan A. Odom, Journal of The Electrochemical Society 165(5), A731-A735 (2018).
  54. “Mechanical Property Evolution of Silicon Composite Electrodes Studied by Environmental Nanoindentation,” Yikai Wang, Qinglin Zhang, Dawei Li, Jiazhi Hu, Jiagang Xu, Dingying Dang, Xingcheng Xiao, and Yang‐Tse Cheng, Advanced Energy Materials 8(10): 1702578 (2018).
  55. “Nonstoichiometry and Li‐Ion Transport in Lithium Zirconate: the Role of Oxygen Vacancies,” Xiaowen Zhan, Yang‐Tse Cheng, and Mona Shirpour, Journal of the American Ceramic Society 101: 4053–4065 (2018).
  56. “Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling,” Dawei Li, Yikai Wang, Jiazhi Hu, Bo Lu, Dingying Dang, Junqian Zhang, and Yang-Tse Cheng, Journal of Power Sources 387: 9-15 (2018).
  57. “Examining the validity of Stoney-equation for in-situ stress measurements in thin film electrodes using a large-deformation finite-element procedure,” Jici Wen, Yujie Wei, and Yang-Tse Cheng, Journal of Power Sources 387, 126-134 (2018).
  58. “Stress evolution in elastic-plastic electrodes during electrochemical processes: A numerical method and its applications,” Jici Wen, Yujie Wei, and Yang-Tse Cheng, Journal of the Mechanics and Physics of Solids 116, 403-415 (2018).
  59. “Effects of adhesion and cohesion on the electrochemical performance and durability of silicon composite electrodes,” Jiazhi Hu, Yikai Wang, Dawei Li, and Yang-Tse Cheng, Journal of Power Sources 397: 223-230 (2018).
  60. “Layer-by-Layer Synthesis of Thick Mesoporous TiO2 Films with Vertically Oriented Accessible Nanopores and Their Application for Lithium-Ion Battery Negative Electrodes,” Suraj Nagpure, Qinglin Zhang, M. Arif Khan, Syed Z. Islam, Jiagang Xu, Joseph Strzalka, Yang-Tse Cheng, Barbara L. Knutson, and Stephen E. Rankin, Advanced Functional Materials 28, 1801849 (2018).
  61. “Linking lignin source with structural and electrochemical properties of lignin-derived carbon materials,” Wenqi Li, Yan Zhang, Lalitendu Das, Yikai Wang, Mi Li, Namal Wanninayake, Yunqiao Pu, Doo Young Kim, Yang-Tse Cheng, Arthur J. Ragauskas, and Jian Shi, RSC Adv. 8 (68), 38721-38732 (2018).
  62. “Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0. 8Co0. 1Mn0. 1O2 positive electrode materials for Li-ion batteries,” Shuang Gao, Xiaowen Zhan, and Yang-Tse Cheng, Journal of Power Sources 410-411: 45-52 (2019).
  63. “Effects of Cobalt Deficiency on Nickel-rich Layered LiNi0. 8Co0. 1Mn0. 1O2 Positive Electrode Materials for Lithium-Ion Batteries,” Shuang Gao, Yang-Tse Cheng, Mona Shirpour, ACS Applied Materials & Interfaces 11: 982-989 (2019).
  64. “Influence of annealing atmosphere on Li2ZrO3-Coated LiNi0. 6Co0. 2Mn0. 2O2 and its high-voltage cycling performance,” Xiaowen Zhan, Shuang Gao, Yang-Tse Cheng, Electrochimica Acta 300: 36-44 (2019).
  65. “Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes,” Yan Sun, Xiaowen Zhan, Jiazhi Hu, Yikai Wang, Shuang Gao, Yuhua Shen, Yang-Tse Cheng, ACS applied materials & interfaces 11: 12467-12475 (2019).
  66. “Microstructure and deformation behavior of hot-rolled AZ31/Ti multilayers,” Baleegh Alobaid, Fuqian Yang and Yang-Tse Cheng, Materials Research Express 6 (8), 0865a2 (2019).
  67. “Influence of polymeric binders on mechanical properties and microstructure evolution of silicon composite electrodes during electrochemical cycling,” Yikai Wang, Dingying Dang, Dawei Li, Jiazhi Hu, Yang-Tse Cheng, Journal of Power Sources 425: 170-178 (2019).
  68. “Spatial Molecular Layer Deposition of Ultrathin Polyamide to Stabilize Silicon Anodes in Lithium-Ion Batteries,” Jasmine M. Wallas, Brian C. Welch, Yikai Wang, Jun Liu, Simon Hafner, Rui Qiao, Taeho Yoon, Yang-Tse Cheng, Steven M. George, and Chunmei Ban, ACS Applied Energy Materials 2 (6), 4135-4143 (2019).
  69. “The Influence of Polyvinylidene Fluoride (PVDF) Binder Properties on LiNi0.33Co0.33Mn0.33O2 (NMC) Electrodes Made by a Dry-Powder-Coating Process,” Ming Wang, Jiazhi Hu, Yikai Wang, and Yang-Tse Cheng, Journal of The Electrochemical Society 166 (10), A2151-A2157 (2019).
  70. “Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling,” Yikai Wang, Dingying Dang, Dawei Li, Jiazhi Hu, Xiaowen Zhan, and Yang-Tse Cheng, J. Power Sources 438, 226938 (2019).
  71. “Oxidative Pyrolysis of Si/Polyacrylonitrile Composites as an Unconventional Approach to Fabricate High Performance Lithium Ion Battery Negative Electrodes,” Jiazhi Hu, Ming Wang, Andrew W. Meyer, Xiaosong Huang, and Yang-Tse Cheng, Journal of The Electrochemical Society 166 (15), A3716-A3722 (2019).
  72. “Freeze-dried low-tortuous graphite electrodes with enhanced capacity utilization and rate capability,” Dingying Dang, Yikai Wang, Shuang Gao, and Yang-Tse Cheng, Carbon 159,  133-139 (2020).
  73. "Structure and Mechanical Properties of Electroplated Mossy Lithium: Effects of Current Density and Electrolyte," Yikai Wang, Dingying Dang, Xingcheng Xiao, and Yang-Tse Cheng, Energy Storage Materials 26, 276-282 (2020).
  74. "Effects of the Mixing Sequence on Making Lithium Ion Battery Electrodes," Ming Wang, Dingying Dang, Andrew Meyer, Renata Arsenault, Yang-Tse Cheng, Journal of The Electrochemical Society 167, 100518 (2020).
  75. "Lithium Ion Battery Electrodes Made Using Dimethyl Sulfoxide (DMSO)-a Green Solvent." Ming Wang, Xiaobo Dong, Isabel C Escobar, Yang-Tse Cheng, ACS Sustainable Chemistry & Engineering 8, 30, 11046–11051 (2020).
  76. "Methods of making high perofrmance electrodes," Xiaosong Huang, Jiazhi HU, Yang-tse Cheng, US Patent App. 16/249,513 (2020)
  77. "Lithium Substituted Poly (acrylic acid) as a Mechanically Robust Binder for Low-Cost Silicon Microparticle Electrodes," Dingying Dang, Yikai Wang, Ming Wang, Jiazhi Hu, Chunmei Ban, Yang-Tse Cheng, ACS Appl. Energy Mater. 2020, 3, 11, 10940–10949 (2020)

Modeling and Measurements of Micro- and Nano-Indentation in Elastic-Plastic Solids, Power-Law Creep Solids, and Viscoelastic Solids

  1. “On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile,” C.-M. Cheng and Y.-T. Cheng, Appl. Phys. Lett. 71, 2623 (1997).
  2. “Analysis of indentation loading curves obtained using conical indenters,” Y.-T. Cheng and C.-M. Cheng, Phil. Mag. Lett. 77, 39 (1998).
  3. “Further analysis of indentation loading curves: effects of tip imperfection on mechanical property measurements,” Y.-T. Cheng and C.-M. Cheng, Materials Res. 13, 1059 (1998).
  4. “A scaling approach to conical indentation in elastic-plastic solids with work-hardening,” Y.-T. Cheng and C.-M. Cheng, Appl. Phys. 84, 1284 (1998).
  5. “Scaling relationships in conical indentation in elastic-plastic solids with work-hardening,” Y.-T. Cheng and C.-M. Cheng, Res. Soc. Symp. Proc. 522, 139 (1998).
  6. “Effects of sinking-in and piling-up on estimating contact area under load in indentation,” Y.-T. Cheng and C.-M. Cheng, Mag. Lett. 78, 115 (1998).
  7. “Relationships between hardness, elastic modulus, and the work of indentation,” Y.-T. Cheng and C.-M. Cheng, Phys. Lett. 73, 614 (1998).
  8. “Scaling relationships in conical indentation of elastic-perfectly plastic solids,” Y.-T. Cheng and C.-M. Cheng, J. Solids Structures 36, 1231 (1999).
  9. “Can stress-strain relationships be determined from indentation curves using conical and pyramidal indenters?” Y.-T. Cheng and C.-M. Cheng, Materials Res. Rapid Communication 14, 3493 (1999).
  10. “What is indentation hardness?” (invited), Y.-T. Cheng and C.-M. Cheng, Surface and Coatings Technology 133-134, 417 (2000).
  11. “Hardness obtained from conical indentation with various cone angles,” Y.-T. Cheng and Z. Li, Materials Research 15, 2830 (2000).
  12. “Scaling relationships in indentation of power-law creep solids using self-similar indenters,” Y.-T. Cheng and C.-M. Cheng, Mag. Lett. 81, 9 (2001).
  13. “Scaling approach to modeling indentation measurements” (invited), Y.-T. Cheng, Che-Min Cheng, and Zhiyong Li, in “Fundamentals of Nanoindentation and Nanotribology II,” edited by S. P. Baker, R. F. Cook, S. G. Corcoran, and N. R. Moody, Res. Soc. Symp. Proc. 649, Q1.1. (2001).
  14. “On two indentation hardness definitions,” Zhiyong Li, Yang-Tse Cheng, Henry T. Yang, and S. Chandrasekar, Surface and Coatings Technology 154, 124 (2002).
  15. “Scaling relationships for indentation measurements,” Y.-T. Cheng, Z. Li, and C.-M. Cheng, Mag A 82, 1821 (2002).
  16. “Determining constitutive models from conical indentation: a sensitivity analysis,” Wes Capehart and Yang-Tse Cheng, Mat. Res. 18, 827 (2003)
  17. “An energy-based method for analyzing instrumented spherical indentation experiments,” W. Ni, Y.-T. Cheng, C.-M. Cheng, and D. S. Grummon, Mat. Res. 19, 149 (2004).
  18. “Scaling, dimensional analysis, and indentation measurements” (invited), Y.-T. Cheng and C.-M. Cheng, Materials Science and Engineering Reports: A Review Journal R44, 91 (2004).
  19. “Modeling indentation in linear viscoelastic solids,” Y.-T. Cheng and C.-M. Cheng, in Fundamentals of Nanoindentation and Nanotribology III, edited by D. F. Bahr, Y.-T. Cheng, N. Huber, A. B. Mann, and K. J. Wahl, Mat. Res. Soc. Symp. Proc. 841, R11.2.1 (2005).
  20. “Modeling conical indentation in homogeneous materials and in hard films on soft substrates,” W. Ni and Y.-T. Cheng, Mater. Res. 20, 521 (2005).
  21. “Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids,” Y.-T. Cheng and C.-M. Cheng, Mater. Res. 20, 1046 (2005).
  22. “Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids,” Y.-T. Cheng and   C.-M. Cheng, Materials Science and Engineering A 409, 93 (2005).
  23. “General relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters of arbitrary profiles,” Yang-Tse Cheng and Che-Min Cheng, Phys. Lett. 87, 111915 (2005).
  24. “Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements,” Yang-Tse Cheng, Wangyang Ni, and Che-Min Cheng, Mater. Res. 20, 3061 (2005).
  25. “Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids,” Yang-Tse Cheng, Wangyang Ni, and Che-Min Cheng, Physical Review Letters 97, 075506 (2006). Selected for the August 28, 2006 issue of Virtual Journal of Nanoscale Science & Technology (Volume 14, Issue 9).
  26. “Influence of indenter tip roundness on hardness behavior in nanoindentation,” Weimin Chen, Min Li, Taihua Zhang, Yang-Tse Cheng, and Che-Min Cheng, Materials Science and Engineering A445-446, 323 (2007).
  27. “Revisit of the two-dimensional indentation deformation of an elastic half-space,” Fuqian Yang and Yang-Tse Cheng, Materials Research 24, 1976 (2009).
  28. “Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles,” Yang-Tse Cheng and Fuqian Yang, Materials Research 24, 3013 (2009).
  29. “Influence of contact geometry on hardness behavior in nano-indentation,” Min Li, Weimin Chen, Yang-Tse Cheng, Che-Min Cheng, Vacuum 84, 315 (2010).
  30. “Indentation of power law creep solids by self-similar indenters,” W. M. Chen, Y. T. Cheng, and M. Li, Materials Science and Engineering A 527, 5613 (2010). view
  31. “Analysis on elasticeplastic spherical contact and its deformation regimes, the one parameter regime and two parameter regime, by finite element simulation,” Weimin Chen, Min Li, Yang-Tse Cheng, Vacuum 85, 898-903 (2011). view
  32. “A nanoindentation study of the viscoplastic behavior of pure lithium,” Yikai Wang and Yang-Tse Cheng, Scripta Materialia 130, 191-195 (2017).

Shape Memory and superelastic Effects

  1. “Recovery of microindents in a nickel-titanium alloy: a ‘self-healing’ effect,” W. Ni, Y.-T. Cheng, D. S. Grummon, Appl. Phys. Lett. 80, 3310 (2002).
  2. “Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions,” W. Ni, Y.-T. Cheng, D. S. Grummon, Appl. Phys. Lett. 82, 2811 (2003).
  3. “Shape recovery and stress-induced martensite in TiNi following indentation and wear loading,” W. Ni, Y.-T. Cheng, D. S. Grummon, J.de Physique IV 112, 1147 (2003).
  4. “Microscopic shape memory and superelastic effects under complex loading conditions,” Wangyang Ni, Yang-Tse Cheng, and David S. Grummon, Surface and Coatings Technology 177 –178, 512 (2004).
  5. “Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films,” Yijun Zhang, Yang-Tse Cheng, and David S. Grummon, J. Appl. Phys. 98, 033505 (2005).
  6. “Two-way indent depth recovery in a NiTi shape memory alloy,” Yijun Zhang, Yang-Tse Cheng, and David S. Grummon, Appl. Phys. Lett. 88, 131904 (2006).
  7. “Shape memory surfaces,” Yijun Zhang, Yang-Tse Cheng, and David S. Grummon, Appl. Phys. Lett. 89, 041912 (2006).
  8. “Microscopic Shape Memory and Superelastic Effects and Their Novel Tribological Applications,” Y.-T. Cheng, W. Y. Ni, Y. J. Zhang, and D. S. Grummon, in “IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials, Proceedings of the IUTAM Symposium held in Beijing, China, June 27–30, 2005,” edited by Y. L. Bai, Q. S. Zheng and Y. G. Wei (Springer, 2007).
  9. “Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity,” Yijun Zhang, Yang-Tse Cheng, and D. S. Grummon, Journal of Applied Physics 101, 053507 (2007).
  10. “Understanding indentation-induced two-way shape memory effect,” Yijun Zhang, Yang-Tse Cheng, and D. S. Grummon, J. Materials Research 22, 2851 (2007).
  11. “Indentation in shape memory alloys,” Yang-Tse Cheng and David S. Grummon, in Micro and Nano Mechanical Testing of Materials and Devices, edited by Fuqian Yang and James C. M. Li, Springer 2008, pp.71-86.
  12. “Indentation-induced two-way shape memory surfaces,” Xueling Fei, Yijun Zhang,David S. Grummon, and Yang-Tse Cheng, J. Mater. Res. 24, 823 (2009)
  13. “Surface Form Memory in NiTi: Energy Density of Constrained Recovery During Indent Replication,” Xueling Fei, C. J. O'Connell, David S. Grummon, and Yang-Tse Cheng, J. of Materials Engineering Performance 18, 538 (2009).
  14. “Revealing Triple-Shape Memory Effect by Polymer Bilayers,” Tao Xie, Xingcheng Xiao, Yang-Tse Cheng, Macromol. Rapid Commun. 30, 1823 (2009).
  15. “Self-healable graphene polymer composites,” Xingcheng Xiao, Tao Xie, and Yang-Tse Cheng, Journal of Materials Chemistry 20, 3508 (2010).
  16. “Remote Controlled Multishape Polymer Nanocomposites with Selective Radiofrequency Actuations,” Zhengwang He, Nitin Satarkar, Tao Xie, Yang-Tse Cheng, and J. Zach Hilt, Adv. Mater. 23, 3192–3196 (2011). view
  17. “Surface form memory by indentation and planarization of NiTi: displacements and mechanical energy density during constrained recovery,” Xueling Fei, Corey O’Connell, D. Grummon, and Yang-Tse Cheng, Journal of Materials Science 46, 7401–7409 (2011). view
  18. “Surface form memory in NiTi shape memory alloys by laser shock indentation,”X.L. Fei, D.S. Grummon, C. Ye, G.J. Cheng, Y.-T. Cheng, Journal of Materials Science 47, 2088-2094 (2012). view
  19. “Spherical indentation of NiTi-based shape memory alloys,” Peizhen Li, Haluk E. Karaca, and Yang-Tse Cheng, Journal of Alloys and Compounds 651, 724-730 (2015).

Superhydrophobic and Superhydrophilic Surfaces

  1. “Is the lotus leaf superhydrophobic?” Y.-T. Cheng and D. E. Rodak, Applied Physics Letters 86, 144101 (2005).
  2. “Microscopic observations of condensation of water on lotus leaves,” Y.-T. Cheng, D. E. Rodak, A. Angelopoulos, and T. Gacek, Appl. Phys. Lett. 87, 194112 (2005).
  3. “Effects of micro- and nano-structures on the self-cleaning behavior of lotus leaves,” Y.-T. Cheng, D. E. Rodak, C. A. Wong, and C. A. Hayden, Nanotechnology 17, 1359 (2006).
  4. “Condensed water on superhydrophobic carbon films,” Xingcheng Xiao, Yang-Tse Cheng, Brian W. Sheldon, and Janet Rankin, J. Materials Research 23, 2174 (2008).

Engineered Surfaces and Tribology

  1. “Wear of thermal spray deposited low carbon steel coatings on aluminum alloys,” A. Edrisy, T. Perry, Y.-T. Cheng, A. T. Alpas, Wear. 250, 1023 (2001).
  2. “The effect of humidity on the sliding wear of plasma transfer wire arc thermal sprayed low carbon steel coatings,” A. Edrisy, T. Perry, Y.-T. Cheng, A. T. Alpas, Surf. Coatings Tech. 146, 571 (2001).
  3. “Friction anisotropy at Ni(100)/(100) interfaces:Molecular dynamics studies,” Y. Qi, Y.-T. Cheng, T. Cagin and W. A. Goddard III, Phys. Rev. B 66, 085420 (2002).
  4. “Chemical and mechanical properties of ZDDP antiwear films on steel and thermal spray coatings studied by XANES spectroscopy and nanoindentation techniques,” M. A. Nicholls, T. Do, P. R. Norton, G. M. Bancroft, M. Kasrai, T. W. Capehart, Y.-T. Cheng, and T. A. Pery, Tribology Lett. 15, 241 (2003).
  5. “Effects of the ratio of hardness to Young’s modulus on the friction and wear behavior of bilayer coatings,” W. Ni, Y.-T. Cheng, M. J. Lukitsch, A. M. Weiner, and L. C. Lev, and D. S. Grummon, Appl. Phys. Lett. 85, 4028 (2004).
  6. “Tribological Applications of Shape Memory and Superelastic Effects” (invited), W. Ni, Y.-T. Cheng, and D. S. Grummon, Mater. Res. Soc. Symp. Proc. 843, T4.6.1 (2005).
  7. “Zinc-dialkyl-dithiophosphate antiwear films: dependence on contact pressure and sliding speed,” H. Ji, Mark A. Nicholls, Peter R. Norton, M. Kasrai, T. W. Capehart, T. A. Perry, and Y.-T. Cheng, Wear 258, 789 (2005).
  8. “Vacuum tribological behavior of the non-hydrogenated diamond-like carbon coatings against aluminum: Effect of running-in in ambient air,” E. Konca, Y.-T. Cheng, A.M. Weiner, J. M. Dasch, A. T. Alpas, Wear 259, 795 (2005).
  9. “Novel layered tribological coatings using a superelastic NiTi interlayer,” W. Ni, Y.-T. Cheng, M. Lukitsch, A. M. Weiner, L. C. Lev, and D. S. Grummon, Wear 259, 842 (2005).
  10. “Effect of test atmosphere on the tribological behaviour of the non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy and tungsten carbide,”E. Konca, Y.-T. Cheng, A. M. Weiner, J. M. Dasch, A. T. Alpas, Surface & Coatings Technology 200, 1783 (2005).
  11. “Transfer of 319 Al alloy to titanium diboride and titanium nitride based (TiAlN, TiCN, TiN) coatings: effects of sliding speed, temperature and environment,” E. Konca, Y.-T. Cheng, A.M. Weiner, J.M. Dasch, A. Erdemir and A.T. Alpas, Surface and Coatings Technology 200, 2260 (2005).
  12. “Nanoscale wear and machining behavior of nanolayer interface,” Xueyuan Nie, Peng Zhang, Anita M. Meiner, and Yang-Tse Cheng, Nano Letters 5(10), 1992 (2005).
  13. “A comparison of five categories of carbon-based tool coatings for dry drilling of aluminum,” Jean M. Dasch, Carolina C. Ang, Curtis A. Wong, Yang T. Cheng, Anita M. Weiner, Leo C. Lev, and Erkan Konca, Surface and Coatings Technology 200, 2970 (2006).
  14. “Elevated temperature tribological behavior of non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy,” E. Konca, Y.-T. Cheng, A.M. Weiner, J.M. Dasch, and A.T. Alpas,Surface and Coatings Technology 200, 3996 (2006).
  15. “The behavior of an elastic–perfectly plastic sinusoidal surface under contact loading,” Y.F. Gao, A.F. Bower, K.-S. Kim, L. Lev, Y.-T. Cheng, Wear 261, 145 (2006).
  16. “Dry sliding behaviour of non-hydrogenated DLC coatings against Al, Cu and Ti in ambient air and argon,” E. Konca, Y.-T. Cheng, and A.T. Alpas, Diamond and Related Materials 15, 939 (2006).
  17. “Wear resistant self-healing tribological surfaces by using hard coatings on NiTi shape memory alloys,” W. Ni, Y.-T. Cheng, and D. S. Grummon, Surface and Coatings Technology 201, 1053 (2006).
  18. “The influence of superelastic NiTi interlayers on tribological properties of CrN hard coatings,” Yijun Zhang, Yang-Tse Cheng, and David S. Grummon, Materials Science and Engineering A 438-440, 710 (2006).
  19. “Tribological behavior of diamond-like-carbon (DLC) coatings against aluminum alloys at elevated temperatures,” W. Ni, Y.-T. Cheng, A. M. Weiner, T. A. Perry, Surface and Coatings Technology 201, 3229 (2006).
  20. “Sliding wear of non-hydrogenated diamond-like carbon coatings against magnesium,” E. Konca, Y.-T. Cheng, A.T. Alpas, Surface & Coatings Technology 201, 4352 (2006).
  21. “A variable temperature mechanical analysis of ZDDP-derived antiwear films formed on 52100 steel,” Gavin Pereira, David Munoz-Paniagua, Andreas Lachenwitzer, Masoud Kasrai, Peter R. Norton, T. Weston Capehart, Thomas A. Perry, and Yang-Tse Cheng, Wear 262, 461 (2007).
  22. “Novel tribological systems using shape memory alloys and thin films,” Yijun Zhang, Yang-Tse Cheng, and David S. Grummon, Surface & coatings technology 202, 998 (2007).
  23. “The Role of Hydrogen Atmosphere on the Tribological Behavior of Non-Hydrogenated DLC Coatings against Aluminum,” E. Konca, Y.-T. Cheng, A. M. Weiner, J. M. Dasch, A. T. Alpas, Tribology Transactions 50, 178 (2007).
  24. “The effect of free-machining elements on dry machining of B319 aluminum alloy,” J.M. Dasch, C.C. Ang, C.A. Wong, R.A. Waldo, D. Chester, Y.T. Cheng, B.R. Powell, A.M. Weiner, and E. Konca, J. Mater. Proc. Tech. 209, 4638 (2009).

Growth, Structure, and Properties of Nanostructured Materials: from Nano-composites to Epitaxial Single Crystals to Single Crystal Nanowires

  1. “Tailored Microstructure of Niobium-Niobium Silicides by Physical Vapor Deposition,” R. S. Bhattacharya, A. K. Rai, and M. G. Mendiratta, Y.-T. Cheng, Mat. Res. Soc. Symp. Proc. 194, 71 (1990).
  2. “Al-Ge Phase Separation During Vapor Deposition,” C. A. Adams, M. Atzmon, Y.-T. Cheng, and D. J. Srolovitz, Mat. Res. Soc. Symp. Proc. 187, 33 (1990).
  3. “Transition From Lateral to Transverse Phase Separation During Film Co-deposition,'' C. D. Adams, M. Atzmon, Y.-T. Cheng, and D. J. Srolovitz, Appl. Phys. Lett. 59, 2535 (1991).
  4. “Epitaxial Growth of a-Fe Films on Si(111) Substrates,” Y.-T. Cheng, Y. L. Chen, M. M. Karmarkar, and W.-J. Meng, Appl. Phys. Lett. 59, 953 (1991).
  5. “X-ray Diffraction and Transmission Electron Microscopy Studies of Epitaxial Growth of a-Fe Films on Si(111) Substrates,” Y.-T. Cheng, Y. L. Chen, M. M. Karmarkar, and W.-J. Meng, Mat. Res. Soc. Symp. Proc. 221, 187 (1991).
  6. “Epitaxial growth of aluminum nitride on Si(111) by reactive sputtering,” W.-J. Meng, J. Heremans, and Y.-T. Cheng, Appl. Phys. Lett. 59, 2097 (1991).
  7. “Phase Separation During Co-deposition of Al-Ge Thin Films,” C. D. Adams, M. Atzmon, Y.-T. Cheng, and D. J. Srolovitz, J. Mater. Res. 7, 653 (1992).
  8. “Epitaxial Growth of Double Hexagonal Close-packed Nd on a-Fe(111) Surface,”Y.-T. Cheng and Y. L. Chen, Appl. Phys. Lett. 60, 1951 (1992).
  9. “Ion Channeling Studies of Epitaxial Growth of a-Fe on Hydrogen-terminated Si(111)Surfaces,” M. M. Karmarkar, K. R. Padamanabhan, Y.-T. Cheng, and Y.-L. Chen, Mat. Res. Soc. Symp. Proc. 237, 423 (1992).
  10. “Structural Characterization and Raman Scattering of Epitaxial Aluminum Nitride Thin Films on Si(111),'' W.-J. Meng, T. A. Perry, J. Heremans, Y.-T. Cheng, Mat. Res. Soc. Symp. Proc. 242, 469 (1992).
  11. “Epitaxial Growth of Molybdenum on a-Iron (111) Surfaces,” Yen-Lung Chen and Y.-T. Cheng, Materials Letters 15, 192 (1992).
  12. “Microstructure and tribological characteristics of e-beam co-deposited Ag/Mo thin film coatings,” S. C. Tung and Y.-T. Cheng, Wear 162-164, 763 (1993).
  13. “Epitaxial Growth of Molybdenum on a-Iron (111) Surfaces Studied by Ion Channeling, X-ray diffraction, and Transmission Electron Microscopy,” Y.-T. Cheng, Yen-Lung Chen, M. M. Karmarkar, and K. R. Padamanabhan, J. Mat. Sci. Letters 12, 467 (1993).
  14. “Epitaxial growth of Fe/Mo/Fe(111) and Fe/Cr/Fe(111) on Si(111),” Y.-T. Cheng and Yen-Lung Chen, J. Mater. Res. 8, 1567 (1993).
  15. “Formation of twins during epitaxial growth of a-iron films on silicon (111),” Y.-T. Cheng, Yen-Lung Chen, Wen-Jin Meng, and Yang Li, Phys. Rev. Rapid Communications B48, 14729 (1993).
  16. “Practical and fundamental studies of nanocrystalline composite thin films,” Y.-T. Cheng, Boqin Qiu, Simon Tung, J. P. Blanchard, and G. Drew, Mat. Res. Soc. Symp. Proc. 356, 875 (1995).
  17. “Hardness of thin films of nanocomposites studied by nanoindentation and finite-element analysis,” B. Qiu, Y.-T. Cheng, and J. P. Blanchard, Mat. Res. Soc. Symp. Proc. 400, 305 (1996).
  18. “Epitaxial growth of omega-titanium on the (111) surface of alpha iron,” Y.-T. Cheng and Wen-Jin Meng, Physical Review Letters 76, 3999 (1996).
  19. “Stress-induced growth of bismuth nanowires,” Yang-Tse Cheng, Anita M. Weiner, Curtis A. Wong, Michael P. Balogh, and Michael J. Lukitsch, Appl. Phys. Lett. 81, 3248 (2002).

Amorphous Metals

  1. “Amorphous and Crystalline Phase Formation by Ion Mixing of Ru-Zr and Ru-Ti,” Y.-T. Cheng,W. L. Johnson, and M-A. Nicolet, Mat.  Res. Soc. Symp. Proc.  37, 565  (1984).
  2. “Studies on the Rules for Amorphous Phase Formation by Ion Mixing in Metallic Sstems,” Y.-T. Cheng, W. L. Johnson, and M-A. Nicolet, in Advan. Appl. Ion Implantation, SPIE 530, p.134 (1985).
  3. “Metallic System with Positive Heats of Mixing Under Ion Beam Irradiation and Rules for Amorphous Phase Formation,” Y.-T. Cheng, K. M. Unruh, M. Van Rossum, M-A. Nicolet, and W. L. Johnson, in Proceedings of the 2nd Workshop on Ion Mixing and Surface Layer Alloying (Sandia Report, SAND85-2465, 1986), p. 52.
  4. “Dominant Moving Species in the Formation of Amorphous NiZr by Solid-State Reaction,” Y.-T. Cheng, W. L. Johnson, and M-A. Nicolet,Appl.  Phys. Lett. 47, 800 (1985).
  5. “Dominant Moving Species in Metallic Amorphous Phase Formation by Solid-State Reaction,” Y.-T. Cheng,M-A. Nicolet, and W. L. Johnson, Mat. Res. Soc. Symp. Proc.   54, 175 (1986). 
  6. “Disordered Materials - A Survey of Amorphous Solids” (invited), Y.-T. Cheng and W. L. Johnson, Science 235, 997 (1987).

Ion-Solid Interactions

  1. “Influence of Chemical Driving Forces in Ion Mixing of Metallic Bilayers,” Y.-T. Cheng,M. Van  Rossum, M-A. Nicolet, and W. L. Johnson, Appl. Phys. Lett.  45, 185 (1984).
  2. “When is Thermodynamics Relevant to Ion-Induced Atomic Rearrangements in Metals?” W. L. Johnson,Y.-T. Cheng, M. Van Rossum, and M-A. Nicolet, Nuclear Instrum. Methods B7/8, 657 (1985).
  3. “Correlation Between Cohesive Energy and Mixing Rate in Ion Mixing of Metallic Bilayers,'' M. Van Rossum, Y.-T. Cheng, M-A. Nicolet, and W. L. Johnson,Appl. Phys. Lett. 46, 610 (1985).
  4. “Correlation Between the Temperature Dependent Ion Mixing and the Cohesive Energy of Metallic Bilayers,” Y.-T. Cheng,X. A. Zhao,  W. L. Johnson, and M-A. Nicolet, J. Appl. Phys.  60, 2615 (1986).
  5. “Studies of A Phenomenological Model of Ion Mixing in Metals,” Y.-T. Cheng, T. W. Workman, M-A. Nicolet, and W. L. Johnson, Mat. Res. Soc. Symp. Proc. 74, 419 (1987).
  6. “The Effects of Thermodynamics on Ion Mixing,'' T. Workman, Y.-T. Cheng, W. L. Johnson, and M-A. Nicolet, Appl. Phys. Lett. 50, 1485 (1987).
  7. “From Cascade to Spike - A Fractal Geometry Approach,” Y.-T. Cheng,M-A. Nicolet, and W. L. Johnson, Phys. Rev. Lett. 58, 2083 (1987).
  8. “From Cascade to Spike - A Fractal Geometry Approach. II,” Y.-T. Cheng,Mat. Res. Soc. EA-13, 191 (1987).
  9. “Diffusion in Collision Cascades: A Thermodynamic Viewpoint” (invited), Van Rossum and Y.-T. Cheng, Diffusion and Defect Data 57-58, 1 (1988); Ion Implantation 1988, edited by F. H. Wöhlbier (Trans. Tech. Publications, Aedermannsdors, Switzerland, 1988), p.1.
  10. “On the Fractal Nature of Collision Cascades” (invited), Y.-T. Cheng, in NATO Advanced Study Institute, Materials Modification by High-fluence Ion Beams, edited by Roger Kelly and M. da Silva (Kluwer, Dordrecht, 1988), p.191.
  11. “Effect of Ion Mixing on the Depth Resolution of Sputter Depth Profiling,”Y.-T. Cheng, A. M. Dow, and B. M. Clemens, Appl. Phys. Lett. 53, 1346 (1988).
  12. “Influence of Ion Mixing on the Depth Resolution of Sputter Depth Profiling,”Y.-T.  Cheng, A. A. Dow, B. M. Clemens, E.-H. Cirlin, J. Vac. Sci. Tech. A7, 1641 (1989).
  13. “A Comparison Between High-and Low-energy Ion Mixing,” Y.-T. Cheng, E.-H. Cirlin, B. M. Clemens, and A. A. Dow, Mat. Res. Soc. Symp. Proc. 189 (1989).
  14. “Relationships Between Cohesive Energy, Debye Temperature, and the Onset of Temperature-dependent Ion Mixing,” Y.-T. Cheng, Phys. Rev. Rapid Communications B40, 7403 (1989).
  15. “Thermodynamic and Fractal Geometric Aspects of Ion-Solid Interactions” (invited), Y.-T. Cheng, Materials Science and Engineering R: Reports (formerly Mat. Sci. Rep.) 5, 45 (1990).
  16. “Influence of Ion Mixing, Ion Beam Induced Roughness, and Temperature on the Depth Resolution of Sputter Depth Profiling of Metallic Bilayer Interfaces,” E.-H. Cirlin, Y.-T. Cheng, P. Ireland, Surf. Interface Analysis 15, 337 (1990).
  17. “Mass and Geometry Effects on the Anisotropic Transport in Ion Mixing,” G. W. Auner, Y.-T. Cheng, M. H. Alkaisi, and K. R. Padmanabhan, Appl. Phys. Lett. 58, 586 (1991).
  18. “Cohesive Energy Effects on Anisotropic Transport in Ion Mixing,” G. W. Auner, Y.-T. Cheng, M. H. Alkaisi, M. M. Karmarkar, and K. R. Padmanabhan, Nuclear Instrum. Methods B59/60, 504 (1991).
  19. “Thermodynamic and Ballistic Aspects of Ion Mixing” (invited), Y.-T. Cheng, G. W. Auner, M. H. Alkaisi, K. R. Padmanabhan, and M. M. Karmarkar, Nuclear Instrum. Methods B59/60, 509 (1991).
  20. “The Effects of Elevated Temperature on Sputter Depth Profiles of Silver/Nickel Bilayers,” S. J. Simko, Y.-T. Cheng, and M. C. Militello, J. Vac. Sci. Tech. A9, 1477 (1991).
  21. “Similarities and Differences in the Mechanisms of High and Low Energy Ion Mixing” (invited), Y.-T. Cheng, S. J. Simko, M. C. Millitello, G. W. Auner, M. H. Alkaisi, and K. R. Padmanabhan, Mat. Res. Soc. Symp. Proc. 201, 75 (1991).
  22. “A Comparison Between High- and Low-energy Ion Mixing at Different Temperatures” (invited), Y.-T. Cheng, Nucl. Instrum. Methods B64, 38 (1992).
  23. “Fundamentals of Ion Beam Mixing” (invited), Y.-T. Cheng, in Beam Processing of Advanced Materials, edited by J. Singh and S. M. Copley (TMS, Warrendale, 1993), p. 469.

Other topics

  1. “Effect of Added Si on the Resistivity of Co and Ni Films,” S.-J.Kim, Y.-T. Cheng,  and  M.-A.  Nicolet, in Advanced Processing and Characterization of Semiconductors III, SPIE Vol. 623, 269 (1986).
  2. “Corrosion Resistance of Ion Implanted 304L Stainless Steel,” N. L. Lee, G. B. Fisher, and Y.-T. Cheng, in Environmental Degradation of Ion and Laser Beam Treated Surfaces, edited by G. Was and K. S. Grabowski (TMS, Pennsylvania, 1989), p.107.
  3. “On Concentration-dependent Solid-State Diffusion,” Y.-T. Cheng, Mat. Res. Soc. Symp. Proc. 230, 115 (1992).
  4. “Vapor deposited thin gold coatings for high temperature electrical contacts,” Y.-T. Cheng, George Drew, and Bryan Gillispie, in Electrical Contacts -1996, Proc. 42nd IEEE Holm Conference on Electrical Contacts joint with 18th International Conference on Electrical Contacts, p.404.
  5. “Giant magnetoresistance and oscillation in epitaxial Fe/Cr(111) multilayers,” Wen-C. Chiang, David V. Baxter, and Y.-T. Cheng, Mat. Res. Soc. Symp. Proc. 384, 353 (1995).
  6. “Variable magnetic field magnetic force microscopy of the magnetization reversal in epitaxial iron (1 1 1) thin films,” S. Foss, C. Merton, R. Proksch, G. Skidmore, J. Schmidt, E. D. Dahlberg, T. Pokhil, and Y. -T. Cheng, Journal of Magnetism and Magnetic Materials 190, 60 (1998).
  7. “Mechamatronics: An Automotive Perspective,” Browne, Alan L., Bucknor, Norman K., Cheng, Yang T., Johnson, Nancy L., Lin, William C., Namuduri, Chandra S., Sun, Zongxuan, and Usoro, Patrick, paper No. 5388-54, SPIE 11th International Symposium on Smart Structures and Materials, March 14-18, 2004, San Diego, CA.
  8. “Structure and Mechanical Properties of Magnesium‐Titanium Solid Solution Thin Film Alloys Prepared by Magnetron‐sputter Deposition,” Daad Haddad, GuangLing Song, Yang-Tse Cheng, Magnesium Technology 2011, pp 617-621.
  9. “Mg-Ti: A Possible Biodegradable, Biocompatible, Mechanically Matched Material for Temporary Implants,” Ilona Hoffmann, Yang-Tse Cheng, David A. Puleo, Guangling Song and Richard A. Waldo, MRS Proceedings, 1301, mrsf10-1301-oo06-07 doi:10.1557/opl.2011.566 (2011).
  10. “Improved bending fatigue and corrosion properties of a Mg–Al–Mn alloy by super vacuum die casting,” Wei Wen, Alan A. Luo, Tongguang Zhai, Yan Jin, Yang-Tse Cheng, and Ilona Hoffmann, Scr. Mater. 67 (11), 879-882 (2012).

 

US Patents (48)

  1. “Method of forming silver/molybdenum surface coating material,” S. Tung and Yang-Tse Cheng, US Patent 5,225,253 (July 6, 1993).
  2. “Silver-nickel nano-composite coating for terminals of separable electrical connectors,” Yang-Tse Cheng and George A. Drew, US Patent 5,679,471 (October 21, 1997).
  3. “Hydrogen sensor,” Yang-Tse Cheng, Yang Li, D. J. Lisi, S. Gutowski, and A. Poli, US Patent 5,670,115 (September 23, 1997).
  4. “Thin film hydrogen sensor,” Yang-Tse Cheng, A. Poli, M. A. Meltser, US Patent 5,886,614 (March 23, 1999).
  5. “Low friction metal-ceramic composite coatings for electrical contacts,” Yang-Tse Cheng, George Albert Drew, Bryan A. Gillispie, and Wen-Jin Meng, US Patent 6,007,390 (December 28, 1999).
  6. “Low friction electrical terminals,” George Albert Drew, Mark S. Ricketts, Bryan A. Gillispie, Yang-Tse Cheng, Robert A. Suchanek, US Patent 6,254,979 (July 3, 2001).
  7. “Electrode and membrane-electrode arrangement for electrochemical cells,” Gayatri Vyas, Swathy Swathirajan, Yang-Tse Cheng, and Youssef M. Mikhail, US Patent 6,521,381 (February 18, 2003).
  8. “Releasable fastener system,” Yang-Tse Cheng, Wangyang Ni, and John C. Ulicny, US Patent 6,766,566 (July 27, 2004).
  9. “Metallic nanowire and method of making the same,” Anita M. Weiner, Curtis A. Wong, Yang-Tse Cheng, Michael P. Balogh, Michael J. Lukitsch, US Patent 6,841,013 (January 11, 2005).
  10. “Metallic nanowire and method of making the same,” Anita M. Weiner, Curtis A. Wong, Yang-Tse Cheng, Michael P. Balogh, Michael J. Lukitsch, US Patent 6,841,235 (January 11, 2005).
  11. “Planetary gearset with multi-layer coated sun gear,” Leonid C. Lev, Yang-Tse Cheng, Neil E. Anderson, Anita M. Weiner, and Robert F. Paluch, US patent 6,846,261 (January 25, 2005).
  12. “Ultra-low loadings of gold for stainless steel bipolar plates,” Gayatri Vyas, Yang-Tse Cheng, Mahmoud H. Abd Elhamid, and Youssef M. Mikhail, US patent 6,866,958 (March 15, 2005).
  13. “Metallic-based adhesion materials,” Y.-T. Cheng, W. Ni, L. C. Lev, M. J. Lukitsch, D. S. Grummon, and Anita M. Weiner, US patent 6,866,730 (March 15, 2005).
  14. “Oxidation-resistant magnetorheological fluid,” John C. Ulicny and Yang T. Cheng, US 6,929,757 (August 16, 2005).
  15. “Metallic-based adhesion materials,” Y.-T. Cheng, W. Ni, L. C. Lev, M. J. Lukitsch, D. S. Grummon, and Anita M. Weiner, US patent 7,005,195 (February 28, 2006).
  16. “Self-healing tribological surfaces,” Y.-T. Cheng, W. Ni, M. J. Lukitsch, A. M. Weiner, and D. S. Grummon, US patent 7,060,140 (June 13, 2006).
  17. “Metallic nanowire and method of making the same,” Anita M. Weiner, Curtis A. Wong, Yang-Tse Cheng, Michael P. Balogh, Michael J. Lukitsch, US Patent 7,081,293 (July 25, 2006).
  18. “Gear surface treatment procedure,” Leonid C. Lev, Michael J. Lukitsch, Yang-Tse Cheng, Anita M. Weiner, Robert F. Paluch, US patent 7,138,066 (November 21, 2006).
  19. “Diamond coated article and method of its production,” Leonid C. Lev, Yang T. Cheng, Michael J. Lukitsch, and Anita M. Weiner, US patent 7,195,817 (March 27, 2007).
  20. “Friction stir processing for surface properties,” Yen-Lung Chen, Thomas Arthur Perry, Yang-Tse Cheng, and Anita M. Weiner, US patent 7,225,969 (June 5, 2007).
  21. “Roller hemming apparatus and method,” John E. Carsley, Wayne W. Cai, Gary A. Kruger, Paul E. Krajewski, Yang-Tse Cheng, US patent 7,290,423 (November 6, 2007).
  22. “CVT belt with chromium nitride coating,” Yucong Wang, Sohail A. Khan, Beizhi Zhou, Reuben Sarkar, Michael J. Lukitsch, Yang-Tse Cheng, Anita M. Weiner, US patent 7,294,077 (November 13, 2007).
  23. “Magnetorheological fluid compositions,” Yang-Tse Cheng, John C. Ulicny, Thomas A. Perry, and Mark A. Golden, US patent 7,354,528 (April 8, 2008).
  24. “Magnetorheological fluid compositions,” John C. Ulicny, Yang-Tse Cheng, Mark A. Golden, Keith S. Snavely, US patent 7,419,616 (September 2, 2008).
  25. “Information storage device,” Jihui; Yang, Dexter D. Snyder, and Yang-Tse Cheng, US patent 7,443,003 (October 28, 2008).
  26. “Reconfigurable fixture device and methods of use,” Mark W. Verbrugge, Jihui Yang, Yang T. Cheng, Michael J. Lukitsch, Alan L. Browne, Nilesh D. Mankame, US patent 7,480,975 (January 27, 2009).
  27. “Magnetorheological fluid compositions,” Yang-Tse Cheng, John C. Ulicny, Mark A. Golden, and Keith S. Snavely, US patent 7,521,002 (April 21, 2009).
  28. “Two-Way Shape Memory Surfaces,” Yijun Zhang, Yang T. Cheng, David S. Grummon, US patent 7,563,334 (July 21, 2009).
  29. “Ultra-low loadings of gold for stainless steel bipolar plates,” Gayatri Vyas, Yang-Tse Cheng, Mahmoud H. Abd Elhamid, and Youssef M. Mikhail, US patent 7,625,654 (December 1, 2009).
  30. “Magnesium-titanium solid solution alloys” Yang T. Cheng, Mark W. Verbrugge, Michael P. Balogh, Daniel E. Rodak, Michael Lukitsch, US patent 7,651,732 (January 26, 2010).
  31. “Hydrophilic surface modification of bipolar plate,” Mahmoud H. Abd Elhamid, Gayatri Vyas, Yang-Tse Cheng, and Richard H. Blunk, US patent 7,709,145 (May 4, 2010).
  32. “Lubricant for elevated temperature forming,” Paul E. Krajewski and Yang T. Cheng, US patent 7,730,753 (June 8, 2010).
  33. “Fuel cell water management enhancement method,” Yang-Tse Cheng, Gayatri Vyas, and Mahmoud H. Abd Elhamid, US patent 7,842,435 (November 30, 2010).
  34. “Piston Skirt Oil Retention for an Internal Combustion Engine,” Fanghui Shi and Y.-T. Cheng, US patent 7,866,295 (January 11, 2011).
  35. “Method for forming articles having apertures and articles having substantially reduced residual compressive stress,” Leonid C. Lev, Jon T. Carter, Yang T. Cheng, Carolina C. Ang, US patent 7,879,402 (February 1, 2011).
  36. “Fuel cell assembly,” Yang T. Cheng, Michael J. Lukitsch, William R. Rodgers, Paula D. Fasulo, US patent 7,972,744 (July 5, 2011).
  37. “Apparatus with active material surface in contact with rheological fluid and method of enhancing performance thereof,” Mark A. Golden, John C. Ulicny, and Yang T. Cheng, US patent 8,056,687 (November 15, 2011).
  38. “Remote activation of thermo-reversible dry adhesives,” Yang T. Cheng, Tao Xie, Xingcheng Xiao, John C. Ulicny, and Hamid G. Kia, US patent 8,057,891 (November 15, 2011).
  39. “Layered coating and method for forming the same,” Leonid C. Lev, Michael J. Lukitsch, Yang T. Cheng, Anita M. Weiner, Robert F. Paluch, and Neil E. Anderson, US patent 8,092,922 (January 10, 2012).
  40. “Self-healing and scratch resistant shape memory polymer system,” Xingcheng Xiao, Tao Xie, and Yang T. Cheng, US patent 8,198,349 (June 12, 2012).
  41. “EMBOSSED SHAPE MEMORY SHEET METAL ARTICLE,” John R. Bradley, Paul E. Krajewski, Yang T. Cheng, US patent 8,266,938 (September 18, 2012).
  42. “Method for forming articles having apertures and articles having substantially reduced residual compressive stress,” Leonid C. Lev, Jon T. Carter, Yang T. Cheng, Carolina C. Ang, US patent 8,357,429 (January 22, 2013).
  43. “Method For Making Super-Hydrophilic And Electrically Conducting Surfaces For Fuel Cell Bipolar Plates,” Daniel E. Rodak, Yang T. Cheng, Mei Cai, Martin S. Ruthkosky; US patent 8,603,703 (December 10, 2013).
  44. “Liquid-metal negative electrode for lithium-ion batteries,” Yang T. Cheng, Stephen J. Harris, Adam T. Timmons, US patent 8,642,201 (February 4, 2014).
  45. “Self healing lithium-ion battery negative electrodes, product including same, and methods of making and using same,” Yang T. Cheng, Stephen J. Harris, Adam T. Timmons, US patent 8,658,295 (February 25, 2014).
  46. “Self-healing and scratch resistant shape memory polymer system,” Xingcheng Xiao, Tao Xie, and Yang T. Cheng, US patent 8,664,299 (March 4, 2014).
  47. “Liquid metal electrodes for rechargeable batteries,” Rutooj D. Deshpande, Juchuan Li, Yang-Tse Cheng, US patent 8,841,014 (September 23, 2014).
  48. “Polymer systems with multiple shape memory effect,” Tao Xie, Xingcheng Xiao, Yang T. Cheng, US patent 8,865,310 (October 21, 2014).